Archive for November, 2007

He who divides and shares is left with the best share

Tuesday, November 6th, 2007

I’ve been talking to a lot of people about the “iWARP port sharing problem” lately, so I thought it might be a good idea to write a quick summary to point at and bring new people up to speed without constantly repeating myself.

To start with, iWARP is an RDMA (remote direct memory access) protocol that runs over TCP (or conceivably SCTP or any other stream protocol). It was defined by the IETF rddp working group, and the standard is in RFC 5040 and later RFCs. So what’s so great about RDMA?

The rationale for RDMA is laid out in great detail in RFC 4297, but the basic idea is that allowing network messages to carry information about where they should be received and allowing the NIC to place the data directly in that buffer allows fundamentally better performance.

To take a concrete example, think of iSCSI: an initiator sends a bunch of SCSI commands to a target (probably queuing up multiple commands), and the target processes the commands, possibly out of order, and returns the responses to the initiator. Without RDMA (or at least, without “direct data placement,” which is pretty equivalent to RDMA), for each read that the initiator does, it has to receive the data from the target, look at which command the data corresponds to, and copy it into the buffer that the SCSI midlayer wants it in. With RDMA and the “iSCSI Extensions for RDMA” (iSER, which is RFC 5046), the target can send the data in response to a read command and have it placed directly in the receive buffer on the initiator, which saves the copy and uses 3x less memory bandwidth (which is huge if the data is running at 10Gb/sec). In the SCSI world, this is nothing particularly exciting: pretty much every Fibre Channel HBA in the world already does the equivalent thing. What’s cool about iWARP is that it allows similar optimizations for NFS (the IETF nfsv4 working group is defining a standard for NFS/RDMA, and kernel 2.6.24-rc1 already has the client side of this draft protocol merged) as well as other applications that we haven’t thought of yet.

The way that iWARP is implemented is that RDMA NICs handle the full iWARP protocol including TCP in hardware — yes, the dreaded “TCP offload engine.” This is crucial to the performance: if the network data isn’t processed to the point of knowing where to put it on the NIC’s side of the PCI bus, then the memory bandwidth savings of copy avoidance is lost. So while one can imagine an iWARP implementation with stateless NIC hardware using some super-fancy header splitting and chipset DMA engine tricks, it’s not clear that it will perform as well as current iWARP NICs do.

Now, in addition to handling TCP connections, iWARP NICs also have to act like normal NICs so that they can handle normal network traffic such as ARPs, pings or ssh logins. What this means is that some packets are received normally and passed up the standard network stack, while other packets that belong to iWARP connections are consumed by the NIC.

This is what leads to the “port sharing problem.” One application might do a normal bind() to accept TCP connections on port X. It might even let the kernel choose a port number for it. Then another application (possibly even the same application) does an iWARP bind and tells the iWARP NIC to accept TCP connections on the same port X. This might happen because two different applications do the bind and have no way of coordinating with each other, or it might happen because one application just passes 0 in the sin_port field of its bind requests, and the kernel chooses the same port for both the normal and iWARP bind(). Whatever the reason, the end result is not good: the NIC and the network stack are left fighting for the same packets, and someone has to lose.

The reason this is an issue is because the kernel’s network stack and iWARP stack have completely separate port allocators, so there is no way for applications to prevent port collisions from happening. The obvious solution is to have normal TCP and iWARP port numbers allocated from the same space.

Unfortunately, the Linux networking developers are not too interested in cooperating on this. It seems that some people have just decided that anyone who wants to use iWARP is wrong to want that (no matter how much better than the alternatives it is for that user’s app) and will just reflexively reject anything iWARP-related without trying to engage in constructive discussion. (Given that attitude, it’s rather ironic when the same people preach about open-mindedness and “thinking outside the box,” but let’s not get sidetracked…)

Given the current deadlock, the advice I’ve been giving to the various iWARP NIC companies is just to sell a lot of iWARP NICs and make the problem so big that we’re forced to find a solution. I don’t see any other way to force people to work together.